
Part III: discrete-time dynamics of diffusions and
discrete-time likelihood

I Transition density, discrete-time likelihood, approximate
dynamics based on discretizations

I Pseudo-likelihood approaches

I Exact simulation of diffusions using rejection sampling on the
path space (Girsanov and a transformation)



Transition density and discrete-time likelihood

We have seen the Markov transition operator which determines the
exact macroscopic dynamics; its Lebesgue density is called the
transition density:

ps,t(v ,w ; θ) = P [ Vt ∈ dw | Vs = v ] / dw , t > s, w , v ∈ Rd .
(23)

For time homogenous diffusions, this only depends on t − s, and
we simplify the notation

In statistical terms, the transition density gives the density of the
conditional distribution of Vt given Vs = v .



Discrete-time likelihood

Therefore, the joint density of a discretely observed diffusion,
{Vt0 ,Vt1 , . . . ,Vtn}, due to the Markov property, is simply given by
the product of the transition densities

L(θ | v) =
n−1∏
i=0

pti ,ti+1(Vti ,Vti+1 ; θ) . (24)



However, the transition density is rarely available in closed form.
Exceptions are some of the linear SDEs we have seen (e.g 1-d with
additive error, multi-d with additive error and constant
coefficients), or the so-called CIR model [Cox et al., 1985]

We will see later insights as to why it is intractable.
Mathematically, however, it has a very clean representation



Focusing on time-homogeneous diffusions, pt(v ,w) with w fixed,
as a function of (v , t) solves the Kolmogorov backward equation

∂p

∂t
= Ap (25)

with initial condition pT (v ,w) is a Dirac-delta centred at w ,
whereas with v fixed , as a function of (w , t) solves the
Kolmogorov forward equation

∂p

∂t
= A∗p (26)

with initial condition p0(v ,w) is a Dirac-delta centred at v , where
A is the diffusion generator and A∗ its adjoint operator, e.g for
1-d diffusions this is given by

A∗f = −(bf )′ +
1

2
(σ2f )′′

(there might be additional boundary conditions)

In the context of the discrete-time dynamics, it is the KFE that we
are interested in.



However, the KFE can be solved exactly in the cases mentioned
earlier, which are very limited. Numerical solutions based on
standard PDE techniques is a possibility; see the recent article
[Hurn et al., 2007] and the tutorial [Äıt-Sahalia et al., 2004] for
operator methods in this context.

Note that such approaches require space-time discretizations.
Additionally, for statistical purposes we will need several such
evaluations for different t’s and different pairs (v ,w).

Therefore, Monte Carlo methods offer a very attractive alternative
for approximating the discrete-time dynamics of diffusions.



Approximate simulation of diffusion skeletons
Traditional methods involve time-discretisation of the SDE in order
to obtain an approximation to the discrete-time dynamics of the
diffusion. See [Kloeden and Platen, 1995] for an extensive
treatment.

The simplest and quickest is the Euler-Maruyama method:

Vt+∆ = Vt + ∆b(Vt) + σ(Vt)Z∆ (27)

where Z∆ is a zero-mean, unit-variance random variable. This
gives the first clue why transition density is intractable: non-linear
convolution of Gaussians.
How might we assess the approximation of this and other
methods? Strong approximation of order γ

E[|VT − V ∆
T |] ≤ K ∆γ

Weak approximation of order γ

|E[g(VT )]− E[g(V ∆
T )]| ≤ K ∆γ

for suitable functions g .



A strong Euler method uses Z∆ = Bt+∆ − Bt . Under suitable
regularity, strong Euler is of order 1/2 in the strong sense, whereas
in general Euler schemes are of order 1 in the weak sense.

Many higher order schemes exist. Many are based on the
Itô-Taylor expansion. Recall that

f (Vt) = f (V0) +

∫ t

0
A0f (Vs)ds +

∫ t

0
A1f (Vs)dBs

where A0 = A, A1 = σ(x)d/dx .



We can perform a further Itô expansion of both A0f and A1f

f (Vt) = f (V0) + A0f (V0)t + A1f (V0)Bt + R

where

R =

∫ t

0

∫ s

0
A00f (Vr )drds +

∫ t

0

∫ s

0
A10f (Vr )dBrds

+

∫ t

0

∫ s

0
A01f (Vr )drdBs +

∫ t

0

∫ s

0
A11f (Vr )dBrdBs

and Aij f = Ai (Aj f ).
Applying this for f (v) = v we get the strong Euler scheme, and R
gives an explicit form for the error



R contains four terms. For small time intervals, Brownian
fluctuations dominate drift terms (dBr ∼ O(dr 1/2)) so that the
fourth term dominates:∫ t

0

∫ s

0
A11f (Vr )dBrdBs

For f the identity function the fourth error term reduces to∫ t

0

∫ s

0
σ(Vr )σ′(Vr )dBrdBs

Assuming that σ is continuously differentiable, then for small r ,
σ(Vr )σ′(Vr ) ≈ σ(V0)σ′(V0), and error term is

σ(V0)σ′(V0)

∫ t

0

∫ s

0
dBrdBs = σ(V0)σ′(V0)

(B2
t − t)

2
.



This leads to the Milstein approximation scheme

Vt+∆ = Vt + b(Vt)∆ + σ(Vt)Z∆ +
σ(Vt)σ

′(Vt)

2
(Z 2

∆ −∆) .

The Milstein scheme is a strong order 1 approximation of the
diffusion.
Higher order Itô-Taylor expansions further expand some or all of
the four terms in R by Itô’s formula.



Other ways of improving on Euler-Maruyama exist, including
implicit and split-step methods (which are particularly important in
the construction of MCMC methods using diffusion dynamics).

The following family of approximation is particularly relevant in
statistics for diffusions; it directly has a flavour of the Extended
Kalman Filter, but it turns out that it is instrumental in MC
methods for diffusions. Additionally, an empirical investigation in
[Durham and Gallant, 2002] shows that it is among the most
accurate of the approximation methods

We present it for univariate diffusions. The main idea is that since
we can solve explicitly linear SDEs with additive error, we can
locally approximate a non-linear SDE with a linear and solve it.



Local linearization

The idea is at a time increment [t, t + ∆] approximate the drift in
the SDE for V by a linear function and the diffusion by a constant,
and solve explicitly the SDE to obtain Vt+∆ as a locally Gaussian
random variable whose mean depends on Vt . There are various
ways to attempt the linearization.

Note that the Euler scheme is precisely a form of local linearization
where the both coefficients are replaced by constants

Central to linear approximation is Taylor expansion...



Using Itô on b(t,Vt) to get:

db(s,Vs) =
∂b

∂s
(s,Vs) +

∂b

∂v
(s,Vs)dVs +

1

2

∂2b

∂v 2
σ2(s,Vs)ds

Assuming that ∂2b
∂v2σ

2(s,Vs), ∂b
∂s and ∂b

∂v are constant in [t, t + ∆]
we obtain that for s in the interval,

b̃(s,Vs) =

(
∂b

∂t
(t,Vt) +

1

2

∂2b

∂v 2
σ2(t,Vt)

)
s +

∂b

∂v
(t,Vt)Vs

+ b(t,Vt)−
∂b

∂v
(t,Vt)Vt −

(
∂b

∂t
(t,Vt)−

1

2

∂2b

∂v 2
σ2(t,Vt)

)
t

= LtVs + Mts + Nt

and σ̃(s,Vs) = σ(t,Vt)



Thus we obtain an approximating SDE

dVs = (LtVs + Mts + Nt)ds + σ̃tdBs , s ∈ [t, t + ∆], (28)

which can be solved analytically to yield Vt+∆ as a (non-linear)
function of Vt , yielding a locally conditional Guassian
approximating transition density

The approach for constant σ has been developed in a sequence of
articles by Ozaki, and Shoji and Ozaki, see for example
[Ozaki, 1992], [Shoji and Ozaki, 1998], and the weak-strong error
has been investigated. Nevertheless, the more general localization
described is a valid possibility for general σ.



Statistical use of discretizations: pseudo-likelihood

The approximations to the discrete-time dynamics can be used
within pseudo-likelihood approach.

As with the exact solutions, we are interested in discretizations
which yield explicit conditional density for consecutive values. Such
examples are the Euler and the local linearization. The resulting
approximation is applied to each pair of observations vi , vi+1, to
yield the approximation p̂ti ,ti+1(vi , vi+1; θ), and the approximation
to (24)

L̂(θ | v) =
n−1∏
i=0

p̂ti ,ti+1(vi , vi+1; θ) .



Such approach has been undertaken e.g in [Ozaki, 1992], using the
localization approach, but a common unpleasant feature of these
pseudo-likelihood approaches is inconsistency; this has been proved
in [Florens-Zmirou, 1989]. The asymptotic considered is keeping
distance fixed, and increasing number of observations (outfill
asymptotics)

As a simple example, you can consider the Ornstein-Uhlenbeck
process, and compare the MLE for σ and φ with the pseudo-MLE;
the former are consistent as n→∞ but the latter not, see for
example [Pedersen, 1995]



The same is true of other pseudo-likelihood approaches, e.g assume
that Vt+∆ conditionally on Vt is Gaussian with an approximation
to the mean and variance; see for example [Kessler, 1997]. A direct
approximation is given by the Euler, in which case the approach
collapses to the approach described earlier.

However, better approximations can be obtained, e.g based on the
ODEs solved by moments of the diffusion, recall the KFE. The
inconsistency is a result of the mispecification of the moments,
lack of efficiency due to the assumed Gaussianity. Note however,
that under certain conditions, a correct specification of the
moments would yield consistent estimators.

The requirement to obtain statistically consistent and efficient
estimation procedures has motivated the development of MC
methods in this framework. Before proceeding, however, lets see a
different exact representation of the discrete-time dynamics for
SDEs for which the solution is intractable.



Exact simulation of diffusions

We will present the idea in the simplest framework for 1-d,
time-homegenous diffusions. Various extensions exist. The
approach has been developed in detail in
[Beskos et al., 2006a, Beskos et al., 2008, Beskos et al., 2006b].

This is another use of Girsanov’s theorem and the likelihood ratio
on the path space in inference for diffusions. Recall the canonical
representation for the Brownian motion.



An important tool: Brownian bridge

An indispensable component of exact simulation methods, but
more generally of MC for diffusions (see later) is the stochastic
process known as the Brownian bridge. It solves the linear SDE

dXs =
y − Xs

T − s
ds + dBs , s ∈ [0,T ] (29)

and has macroscopic dynamics specified, for 0 < t1 < t2 < T , as

Xt2 | Xt1 ∼ N

(
Xt1 +

t2 − t1

T − t1
(y − Vt1),

(t2 − t1)(T − t2)

T − t1
Id

)
.

(30)
It can be shown from first principles, that this process has the
same law as that of Brownian motion conditioned at its end point
BT = y . It is the first instance of a general class of processes we
will see later, known as diffusion bridges



Rejection sampling

Recall the basic principle of rejection sampling, presented here in a
very generic way

Probability space of interest (Ω,F ,P), P the target measure,
difficult to simulate from.
W another measure on (Ω,F) easy to simulate from, s.t the
likelihood ratio (Radon-Nikodym derivative) exists and

dP
dW

(ω) := f (ω) ≤ K <∞ , ∀ω ∈ Ω



Then, the algorithm for generating one draw proceeds as follows

1. Propose ω ∼W
2. Generate a coin whose probability of heads is f (ω)/K

3. If heads, accept and store ω, otherwise return to 1.

Note the freedom in 2, it is not really necessary to carry out in the
”traditional way” of U ∼ Uni [0, 1] and comparing it to f (ω)/K .



Let P(t,v) denote the probability measure generated by the solution
of

dVs = b(Vs)ds + σ(Vs)dBs , s ∈ [0, t],V0 = v (31)

Then, Vt ∼ pt(v ,dw) is a draw from the marginal of P(t,v)

Therefore, instead of simulating Vt we can think of the - at first
view - much harder task of simulating the whole diffusion path



Nevertheless, we should look for a measure on the path space,
from which we can at least simulate paths (in a sense to be made
precise, for the moment lets think of high-frequency skeletons)

But, from the quadratic variation identity we know that such
measure will have the same diffusion coefficient as (31), and from
the discussion on solvable SDEs we know that unless σ is constant
it would be in general impossible to obtain samples from any such
process. Nevertheless, Itô can help us to change (31) into a
process of unit diffusion, for which we have a much better chance
to simulate exactly



Lamperti transformation

dVs = b(Vs)ds + σ(Vs)dBs

TransformVs → η(Vs) =: Xs where

η(u) =

∫ u 1

σ(z)
dz (32)

Itô’s rule: dXs = α(Xs) ds + dBs , X0 = x := η(V0), s ∈ [0, t],

where

α(u; θ) =
b{η−1(u; θ); θ}
σ{η−1(u; θ); θ}

− σ′{η−1(u; θ); θ} / 2,

Exact simulation of V is equivalent to exact simulation of X



dXs = α(Xs) ds + dBs , s ∈ [0, t],X0 = x (33)

Let Q(t,x) be the distribution on path space induced by X , and
W(t,x) the correspond Wiener measure.

By Girsanov’s formula:

dQ(t,x)

dW(t,x)
(ω) = exp

{∫ t

0
α(ωs)dωs −

1

2

∫ t

0
α2(ωs)ds

}



Another use of Itô: elimination of stochastic integrals Let,

A(u) :=

∫ u

α(z)dz ,

dQ(t,x)

dW(t,x)
(ω) = exp

{
A(ωt)− A(x)− 1

2

∫ t

0
(α2 + α

′
)(ωs)ds

}



Pause for thought

Aim at rejection sampling from Q(t,x) using proposals from
(something close) to W(t,x)

Girsanov’s formula gives the density ratio (which is also a
likelihood ratio)

Density ratio needs to be bounded, and we have still to figure out
how to avoid infinite simulation



Biased Brownian proposals

Process with ending point density (assumed to be integrable)

h(u) ∝ exp{A(u)− (u − x)2/2t}, u ∈ R

Thus, ωt ∼ h, and (ωs , 0 ≤ s < t) | ωt , from Brownian bridge.
Z(t,x) the distribution induced by the biased Brownian motion.
Then

dQ(t,x)

dZ(t,x)
(ω) ∝ exp

{
−
∫ t

0

1

2
(α2 + α

′
)(ωs)ds

}



Summary of assumptions

1. The drift function α is differentiable

2. The function exp{A(u)− (u − x)2/2t}, u ∈ R, is integrable

3. The function (α2 + α
′
)(·) is bounded (this is working

assumption for the lecture, it can be relaxed)



D3

D

D

1

2

r(  )

l(  )θ

θ

u

2
u( α  + α )(   ; θ)/2

|

Example: Periodic drift α(u; θ) = sin(u − θ)



l ≤ inf
u∈R
{(α2 + α

′
)(u)/2}, minimum

r ≥ sup
u∈R
{(α2 + α

′
)(u)/2− l}, range

Define non-negative 0 ≤ φ ≤ 1:

φ(ωs) =
1

r

{
(α2 + α

′
)(ωs)

2
− l

}
, s ∈ [0, t]



Bounded likelihood ratio

dQ(t,x)

dZ(t,x)
(ω) ∝ exp

{
−r

∫ t

0
φ(ωs)ds

}
≤ 1, Z(t,x) − a.s..



Thought process so far

I Wish to simulate Vt given V0 = v

I Embed this into simulating (Vs , s ∈ [0, t]) given V0 = v .
Dead-end

I Transform V → X , simulate X -path using rejection sampling

I Find a dominating measure from which it is easy to simulate
and which has bounded LR wrt to that of X . We have it

Left with carrying out step 2 of Algorithm in 76, and dealing with
infinite paths. Ideas?



Event of equal probability: connection with Poisson process

Theorem
Let Φ be a homogeneous Poisson process of intensity r on
[0, t]× [0, 1] and N is the number of points of Φ below the graph
s 7→ φ(ωs), s ∈ [0, t], then:

P [ N = 0 |ω ] = exp

{
−r

∫ t

0
φ(ωs)ds

}
.
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Idealized rejection sampler

1. Simulate ω ∼ Z(t,x)

2. Simulate a Po(r) process Φ = {z1, z2, . . . , zκ},
zj = (zj ,1, zj ,2), zj ,1 ∈ [0, t], zj ,2 ∈ [0, 1], 1 ≤ j ≤ κ

3. Compute the acceptance indicator I:

I :=
κ∏

j=1

I
[
φ(ωzj,1) < zj ,2

]
4. If I = 1 accept ω, otherwise return to 1 and

retry.



Retrospective Exact Simulation

EA1

1. Simulate Φ = {z1, z2, . . . , zκ}
2. Simulate u ∼ h(u) and the values of ω ∼W(t,x ,u), at

the time instances zj ,1, 1 ≤ j ≤ κ, therefore:

S(ω) = {(0, x), (z1,1, ωz1,1), . . . , (zκ,1, ωzκ,1), (t, u)}

3. Compute the acceptance indicator I.

4. If I = 1 then accept and return the proposed

skeleton S(ω); otherwise return to 1 and retry.



Implications of EA

At first instance, we obtain an exact algorithm for simulation of
Vt given V0, at least for diffusions with certain conditions on their
coefficients.

Obtaining values in [0, t]?

In fact, it opens the way to a completely different perspective on
simulation and inference for stochastic processes

Exact simulation of other path functionals (e.g maximum, hitting
times, etc)



Simple example

dXs = sin(Xs)ds + dBs

This diffusion is not analytically tractable. Clearly, X in the class,
l = −1/2 and r = 9/8. Exact Simulation of X1:
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Final remark about the diffusion transformation

Critical to the procedure described is the Lamperti transformation
(32) which transform V into a process with constant diffusion
coefficient. This transformation has impact on ALL MC procedures
for diffusions (see later).

For 1-d diffusions it exists under mild conditions on σ. For multi-d
processes it might be intractable, or it might even not exist. The
class of processes for which the transformation exists is known as
reducible diffusions. We will return to this point later in the course.



Preamble: Some computational elements

I Generic Importance Sampling

I Brief introduction to MCMC

I Gibbs sampler and Data Augmentation

I Efficiency of Data Augmentation

Or jump to 116



Importance sampling and identities

Importance sampling (IS) is a classic Monte Carlo technique for
obtaining samples from a probability measure P using samples
from another probability measure Q, see for example Chapter 2.5
of [Liu, 2008] for an introduction. Mathematically it is based on
the concept of change of measure.



Suppose that P is absolutely continuous with respect to Q with
Radon-Nikodym density f (x) = P(dx)/Q(dx). Then, in its
simplest form IS consists of constructing a set of weighted particles
(xi ,wi ), i = 1, . . . ,N, where xi ∼ Q, and wi = f (xi ). This set
gives a Monte Carlo approximation of P, in the sense that for
suitably integrable functions g , we have that∑N

i=1 g(xi )wi

N
. (34)

is an unbiased and consistent estimator of

EP[g ] :=

∫
g(x)P(dx) .



IS can be cast in much more general terms, an extension
particularly attractive in the context of stochastic processes. First,
note that in most applications f is known only up to a normalising
constant, f (x) = cfu(x), where only fu can be evaluated and

c = EQ[fu] . (35)

The notion of a properly weighted sample refers to a set of
weighted particles (xi ,wi ), where xi ∼ Q and wi is an unbiased
estimator of fu(xi ), that is

EQ[wi | xi ] = fu(xi ) .

Then for any integrable g

EQ[gw ] = EP[g ]EQ[w ] . (36)



Rearranging the expression we find that a consistent estimator of
EP[g ] is given by ∑N

i=1 g(xi )wi∑N
i=1 wi

. (37)

When wi is an unbiased estimator of f (xi ) we have the option of
using (34), thus yielding an unbiased estimator. However, (37) is a
feasible estimator when c is unknown.

(37) is consistent and under moment conditions its asyptotic
variance is

1

N
Var (f (g − EP[g ]))

which should compare with the exact variance of (34)

1

N
Var(fg)



IS includes exact simulation as a special case when Q = P. Another
special case is rejection sampling (RS), which assumes further that
fu(x) is bounded in x by some calculable K <∞. Then, if we
accept each draw xi with probability fu(xi )/K , the resulting sample
(of random size) consists of independent draws from P. This is a
special case of the generalised IS where wi is a binary 0-1 random
variable taking the value 1 with probability fu(xi )/K .

The main identity:
c = EQ[w ] (38)



Brief intro to MCMC

Aim is again to sample from a probability measure P on some
state-space (Ω,F). IS and its variations are global sampling
methods. Thus they might be very inefficient if Q is different from
P. In any case, they will be increasingly worse (often exponentially
so) when the dimension of the state space grows. One approach is
to try to apply them sequentially, thus yielding sequential MC
(SMC) methods, e.g particle filters

Another direction is to resort to iterative local algorithms. Markov
chain Monte Carlo is the class of such methods. The samples are
only asymptotically (in the number of iterations) drawn from P
and are correlated (latter is true also for IS).



Examples of P:

I Posterior distribution of a high-dimensional parameter vector
in Bayesian statistics: P(dθ) = L(Y |θ)Q(dθ) (e.g the
unobserved values of a spatial process observed with noise and
hyperparameters controlling spatial correlation). Obtain
samples to carry out statistical inference

I The uniform distribution on a constrained space (e.g counts
on cells of a contingency table with fixed margins). Counting,
MC tests

I The law of a diffusion conditioned to its endpoints



Assume for simplicity that P(dω) = π(ω)Q(dω), although this is
not necessary to define the dynamics of MH, see e.g
[Tierney, 1998].

The main idea is to produce a Markov chain which has transition
kernel P(ω,dφ) invariant with respect to π and which has P as its
unique limiting distribution, i.e it is ergodic. By invariance we
mean:

P(dφ) =

∫
Ω
π(ω)P(ω,dφ)Q(dω)

When π is invariant for P, then under relatively mild conditions the
chain will be ergodic. It is a necessary condition for ergodicity



Metropolis-Hastings algorithm

Let q(ω, φ) denote a probability density function (in φ, w.r.t Q) on
Ω; this is called the proposal density. Choose ω0 and then for each
n ≥ 0,

1. given ωn propose φn+1 ∼ q(ωn, ·);

2. calculate the acceptance ratio

α(ωn, φn+1) =
q(φn+1, ωn)π(φn+1)

q(ωn, φn+1)π(ωn)
;

3. accept φn+1, setting ωn+1 = φn+1 with probability 1 ∧ α;

4. otherwise just set ωn+1 = ωn.

Note that again, the normalizing constant of π is not necessary to
carry out the algorithm. Examples of q: q(ω, φ) = q(φ)
(independence sampler), q(ω, φ) ∝ exp{−||φ− ω||2/(2σ2)}
(random walk Metropolis, in Euclidean spaces)



Note that the transition kernel P has density p given by

p(ω, φ) = q(ω, φ)α(ω, φ) , ω 6= φ w.r.t Q

and probability of remaining at the same point

r(ω) =

∫
Ω

q(ω, φ)(1− α(ω, φ))Q(dφ)

(assuming that, as will be in our examples, that the probability to
propose exactly ω is 0)



We show that the MH kernel is invariant w.r.t P. In fact, is
satisfies a stronger property, that of that it is reversibility w.r.t P, a
property which implies invariance, and according to which the joint
distribution of successive values is the same regardless of
time-ordering:

P(dω)P(ω,dφ) = P(dω)P(ωdφ)

To see that this implies invariance, integrate both sides over φ.

Note that it suffices to check this condition for ω 6= φ, in which
case we need to check that the densities are in detailed balance

π(ω)p(ω, φ) = π(φ)p(φ, ω) ω 6= φ

The LHS is given by:

π(ω)q(ω, φ) min

{
1,

q(φ, ω)π(φ)

q(ω, φ)π(ω)

}
= min{π(ω)q(ω, φ), q(φ, ω)π(φ)}



Scaling MH
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Gibbs sampler

Another very popular (in particular in statistics) variant of MCMC
is the Gibbs Sampler (GS). This presupposes a decomposition of ω
into d components ω = (ω1, . . . , ωd) and the existence of the
corresponding conditional densities π(ωi | {ωj , j 6= i})

Random scan Gibbs sampler: iterate the following

1. choose I from U({1, 2, . . . d})
2. Replace ωI by a random draw from π(ωI |{ωj , j 6= I}).

Deterministic scan Gibbs sampler, DUGS: instead of chosing a
random component to update, systematically update each
component in turn.

In general (unless d = 2) this generates a Markov chain invariant
but not reversible w.r.t π. Note however that each conditional step
is reversible w.r.t π.



The decomposition of ω (and π) into d components is driven by
the following two conflicting aims:

I Be able to simulate directly/efficienty the variables within
each block j

I The variables corresponding to different blocks are weakly
dependent



The role of dependence
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Simplifying individual steps: Metropolis-within-Gibbs

In many intresting non-trivial examples it will not be possible to
carry out directly the conditional simulation in some or all steps of
the Gibbs sampler (where the groups have been chosen mainly
with view to aim 2 mentioned before)

Nevertheless, when updating component i we can apply perform a
MH step which targets π(ωi |{ωj , j 6= i}), or apply any other kernel
which leaves this conditional invariant



Data augmentation

The case d = 2 is quite special, since it is easier to study, but it
also naturally appears in many application, in particular to the
so-called missing data problems, which we will study in more
detail.

Sometimes the GS in this case is called the Data Augmentation
algorithm, from the historical developement of a relevant algorithm
for inference in missing data problems. Close links to EM.

For this case one can also get an interesting characterization of the
rate of convergence of the algorithm, which explains the previous
plots



Rate of convergence of DA

γ = 1− inf
h∈L2(π)

E(Var(h(ω1)|ω2))

Var(h(ω1))

Then γ is known as the Bayesian fraction of missing information
(see for example [Rubin, 2004, Meng and van Dyk, 1997]).

γ is also the rate of convergence of DA, which practically
means that in stationarity the algorithm needs −1/ log γ time to
mix around the state space (forget the initial value). Practically it
also means that the effective sample size is about (1− γ)/(1 + γ)

We will revisit DA in the context of partially observed stochastic
processes



Part IV:MC-based likelihood inference for
discretely-observed diffusions with known constant

diffusivity

I Missing data problems and formal data augmentation (DA)

I DA for discretely-observed diffusions with known constant
diffusion coefficient

I Conditional distribution of the missing data: diffusion bridges

I Likelihood ratios for diffusion bridges, transition density
identities, connections to literature

I An MCMC scheme for parameter estimation

To avoid excessive notation we focus on time-homogeneous
diffusions, although this is only for convenience


